1/2*4,5*t^2+15*t-250=0

Simple and best practice solution for 1/2*4,5*t^2+15*t-250=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2*4,5*t^2+15*t-250=0 equation:



1/2*4.5t^2+15t-250=0
Domain of the equation: 2*4.5t^2!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
15t+1/2*4.5t^2-250=0
We multiply all the terms by the denominator
15t*2*4.5t^2-250*2*4.5t^2+1=0
Wy multiply elements
120t^2*4-2000t*4+1=0
Wy multiply elements
480t^2-8000t+1=0
a = 480; b = -8000; c = +1;
Δ = b2-4ac
Δ = -80002-4·480·1
Δ = 63998080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{63998080}=\sqrt{23104*2770}=\sqrt{23104}*\sqrt{2770}=152\sqrt{2770}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8000)-152\sqrt{2770}}{2*480}=\frac{8000-152\sqrt{2770}}{960} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8000)+152\sqrt{2770}}{2*480}=\frac{8000+152\sqrt{2770}}{960} $

See similar equations:

| -1.5c=9 | | 6-2(3x-)=6 | | 6+5x=2x+18 | | (7y-12)=4 | | (x-1)/(x+1)-(x+2)/(x-2)-3=0 | | -x+3(5x-1)=6(3x-1/3)-4x | | 4(x-2)+x+1=2x-3+3(x-4) | | (x-1)/(x+1)-(x+2)/(x-2)=3 | | 8*2x=100 | | 7x-20=3x+8 | | 547,2=1/2*a*12^2 | | 4(3/7)+y=-1 | | w+12=–6–2w. | | 4*x^2=169 | | 33r^2+95-50=0 | | -4(3-t)+8t=0 | | d+12=-5 | | 1.2+c=7 | | 2x+4(x-1)=3(2x+1)-2(x-1) | | 6x-3+5=-10 | | 7x(9x-26)=60 | | ((2x-5)-(2x-5)(x-5))/(x-5)=0 | | (2t-5)(t+2)=0 | | Tn=n2+5n+2 | | 2x+3x=267 | | 3(n+2)=2n+9 | | 12/1.5=x | | (x-2)/(x-5)+(x-3)/(x-5)=2x-5 | | 5e=11e- | | 1.36=2.27−2.32q+q2 | | 3n+75=50+20 | | 11/2*x=-12 |

Equations solver categories